According to our laws of physics the answer is no. But the question for space travellers is how near the speed of light [c] we can get?

Light travels at 300,000 [approx] kilometres per second [186,000 miles per second]. When we look at our sun, not directly of course, we are seeing it as it was 8 minutes and 19 seconds ago. That is the time for light to travel 150 million kilometres [93 million miles]. 

Stars and galaxies are so far away that we express their distances in light years – the distance light travels in 1 year – 10 trillion kilometres [approx] – an unimaginable distance. 

Thus our nearest star is 4.2 light years away, our nearest galaxy 25,000 light years away and the Andromeda galaxy is a staggering 2.5 million light years away. 

For man only stars up to 10 light years away are potentially reachable. But to do this we need to travel at a significant fraction of the speed of light, say between 0.1 and 0.5c and this would equate to a journey time of 100 and 20 years respectively. 

In my view a journey time between 20 and 40 years is the optimum that human beings could tolerate – assuming we can crack hibernation [which I’ll talk about in a later Blog]. Therefore we would need to develop technology to propel a starship at between a quarter and half the speed of light. But can we do this? 

I will discuss the technology for achieving these speeds in my next Blog – but you might like to see how I achieve a journey to a star 10 light years away in The Blue People of Cloud Planet.

So the answer to my basic question is no, but a Dicepteron can!                             

 Read the first few chapters of  The Blue People of  Cloud Planet

See the reviews of  The Blue People of Cloud Planet

Find out how to get your copy of The Blue People of Cloud Planet


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s